Smart Energy and Sustainable Environment , ISSN 2668-957X
2023, Volume 26, Issue 1
Pages 13-28

https://doi.org/10.46390/j.smensuen.26123.453


DEUTERIUM RETENTION IN N-SEEDED AND UNSEEDED TUNGSTEN LAYERS OBTAINED WITH DCMS AND M-HIPIMS TECHNIQUE

Oana Gloria Pompilian 1 , Paul Dinca 2 , Ion Burducea 3 , Flaviu Baiasu 1,2 , Cornel Staicu 3,1*

1 National Institute for Lasers, Plasma and Radiation Physics, Bucharest 077125, Romania
2 Doctoral School of Physics, University of Bucharest, Romania, 077125, Romania
3 “Horia Hulubei” National Institute for Physics and Nuclear Engineering IFIN HH, Magurele, Ilfov, Romania

*Corresponding author: Cornel Staicu, e-mail: cornel.staicu@inflpr.ro

Received 28 April 2023   Received in revised form 15 May 2023 Accepted 06 June 2023 Available online 09 June 2023


Abstract

The retention of hydrogen isotopes in tungsten co-deposited layers is a subject severely understudied in the literature compared to hydrogen isotope implantation in bulk tungsten specimens. However, impurity seeding in future next-generation fusion devices can reduce the sputtering threshold of tungsten and potentially increase the contribution of the tungsten layers to the global tritium retention problem. This paper reports on the development of fusion-relevant tungsten-deuterium and nitrogen-seeded tungsten deuterium layers using direct current (DCMS) and multipulse high-power impulse magnetron sputtering techniques (HiPIMS). The four layers resulting from co-deposition in argon-deuterium and argon-deuterium-nitrogen atmosphere were investigated from the deuterium retention and release point of view. Supplementary the crystalline structure of all samples and particularly the composition of the nitrogen-seeded layers were also studied. The tungsten-deuterium layers produced using m-HiPIMS technology showed a higher crystalline coherence compared to layers deposited with DCMS in part owned to the enhanced ion bombardment of the forming layers during deposition. On the other hand, the nitrogen-seeded layers showed without exception the formation of the tungsten-nitride compound. Here on the contrary the crystalline coherence as revealed by X-ray diffraction measurements measurement showed that nitride formation is favored for DCMS compared with m-HiPIMS. The elemental areal densities of the layer constituents were analyzed using Rutherford Backscattering Spectrometry. In this case, only the two nitrogen-seeded layers were analyzed revealing that a higher nitrogen content by a factor of ~2 is retained in DCMS deposited layer compared to HiPIMS.The release of deuterium was higher in the case of m-HiPIMS layers and it was shown that despite the deposition method the release behavior occurs predominantly at temperatures above 800 K suggesting a high energy trapping of deuterium in tungsten layers. Nitrogen seeding influences both the retention mechanisms and increases the deuterium retention by two orders of magnitude in seeded layers compared to unseeded ones.


References

Alimov, V.K.; Roth, J.; Shu, W.M.; Komarov, D.A.; Isobe, K.; Yamanishi, T.; (2010) Deuterium trapping in tungsten deposition layers formed by deuterium plasma sputtering. J. Nucl. Mater.; 399  doi: 10.1016/j.jnucmat.2010.01.024.

Bisai, N.;  Chowdhuri, M.B.; Banerjee, S.; Raj, H.; Dey, R.; Tanna, R.L.; Manchanda, R.;  Jadeja, K.A.; Ghosh, J. (2019)  Dynamics of neon ions after neon gas seeding into tokamak plasma, Nuclear Fusion, 59, doi:10.1088/1741-4326/ab3d31.

Burducea, I.; Straticiuc, M.; Ghiţa, D.G.; Moşu, D. V.; Cəlinescu, C.I.; Podaru, N.C.; Mous, D.J.W.; Ursu, I.; Zamfir, N. V. (2015) A new ion beam facility based on a 3 MV TandetronTM at IFIN-HH, Romania. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 359, pp. 12-19, doi:10.1016/j.nimb.2015.07.011

Carpentier, S.; Pitts, R.A.; Stangeby, P.C.; Elder, J.D.; Kukushkin, A.S.; Lisgo, S.; Fundamenski, W.; Moulton, D. (2011) Modelling of beryllium erosion-redeposition on ITER first wall panels. Journal of Nuclear Materials, Vol. 415, https://doi.org/10.1016/j.jnucmat.2010.10.081.

Dinca, P.; Porosnicu, C.; Butoi, B; Jepu, I.; Tiron, V.; Pompilian, O.G.; Burducea, I.;  Lungu, C.P.; Velicu, I-L. (2017) Beryllium-tungsten study on mixed layers obtained by m-HiPIMS/DCMS techniques in a deuterium and nitrogen reactive gas mixture, Surface and Coatings Technology, 321 doi:10.1016/j.surfcoat.2017.04.074.

Dinca, P.; Staicu, C.; Porosnicu, C.; Pompilian, O.G.; Banici, A.-M.; Butoi, B.; Lungu, C.P.; Burducea, I. (2021) Deuterium Retention and Release Behavior from Beryllium Co-Deposited Layers at Distinct Ar/D Ratio. Coatings, 11(12), doi: 10.3390/coatings11121443

Dinca, P.; Staicu, C.; Porosnicu, C.; Butoi, B.; Pompilian, O.G.; Banici, A.M.; Baiasu, F.; Burducea, I.; Lungu, C.P. (2022) Deuterium Retention in Mixed Layers with Application in Fusion Technology. Coatings, 12(7), 951,  doi: 10.3390/coatings12070951

Federici, G.; Andrew, P.; Barabaschi, P.; Brooks, J.; Doerner, R.; Geier, A.; Herrmann, A.; Janeschitz, G.; Krieger, K.; Kukushkin, A.; et al. (2003) Key ITER plasma edge and plasma-material interaction issues. Journal of Nuclear Materials, Vol. 313-316, https://doi.org/10.1016/S0022-3115(02)01327-2

Federici, G.; Anderl, R.A.; Andrew, P.; Brooks, J.N.; Causey, R.A.; Coad, J.P.; Cowgill, D.; Doerner, R.P.; Haasz, A.A.; Janeschitz, G.; et al. (1999) In-vessel tritium retention and removal in ITER. J. Nucl. Mater., 266, doi:10.1016/S0022-3115(98)00876-9.

Heinola,  K.; Ahlgren, T.; Nordlund, K.; Keinonen, J., (2010) Hydrogen interaction with point defects in tungsten, Physical review. B, Condensed matter, 82(9):094102, doi: 10.1103/PhysRevB.82.094102.

Johnson, D.F., Carter, E.A.,  (2010) Hydrogen in tungsten: absorption, diffusion, vacancy trapping, and decohesion, Journal of Materials Research, 25, pp. 315-327, doi: 10.1557/JMR.2010.0036.

Kallenbach, A.; Balden, M; Dux, R.; Eich, T.; Giroud, C.; Huber, A.; Maddison, G.P.; Mayer, M.; McCormick, K.;  Neu, R.; Petrie, T.W.; Pütterich, T.; Rapp, J.; Reinke, M.L.;  Schmid, K.; Schweinzer, J.; Wolfe, S. (2011) Plasma surface interactions in impurity seeded plasmas. Journal of Nuclear Materials, 415(1): S19-S26, doi:10.1016/j.jnucmat.2010.11.105.

Kallenbach, A.; Dux, R.; Fuchs, J.C.; Fischer, R.; Geiger, B.; Giannone, L.;  Herrmann, A.;  Lunt, T.; Mertens, V.; McDermott, R.; Neu, R.; Pütterich, T.; Rathgeber, S.; Rohde, V.;  Schmid, K.; Schweinzer, J.; Treutterer, W.  (2010) Divertor power load feedback with nitrogen seeding in ASDEX Upgrade, Plasma Physics and Controlled  Fusion, 52, doi:10.1088/0741-3335/52/5/055002.

Krat, S.; Mayer, M.; von Toussaint, U.; Coad, P.; Widdowson, A.; Gasparyan, Y. et al. (2017) Beryllium film deposition in cavity samples in remote areas of the JET divertor during the 2011-2012 ITER-like wall campaign. Nucl. Mater. Energy,  12 doi:10.1016/j.nme.2016.12.005.

Krat, S.; Gasparyan, Y.; Vasina, Y.; Davletiyarova, A.; Pisarev, A. (2018) Tungsten-deuterium co-deposition: Experiment and analytical description. Vacuum, vol. 149, pp. 23-28, doi:10.1016/j.vacuum.2017.12.004

Krat, S., Gasparyan, Y; Pisarev, A.; Mayer, M.; von Toussaint, U.; Coad, P. et al., (2015) Hydrocarbon film deposition inside cavity samples in remote areas of the JET divertor during the 1999-2001 and 2005-2009 campaigns, Journal of Nuclear Materials, 463, https://doi:10.1016/j.jnucmat.2014.10.055.

Malinský, P.; Slepička, P.; Hnatowicz, V.; and Švorčík, V. (2012) Early stages of growth of gold layers sputter deposited on glass and silicon substrates, Nanoscale Research Letters, 7(1): 241, doi: 10.1186/1556-276X-7-241

Mayer, M.; Behrisch, R.; Plank, H.; Roth, J.; Dollinger, G.; Frey, C.M. (1996) Codeposition of hydrogen with beryllium, carbon and tungsten, Journal of Nuclear Materials, 230, pp. 67-73, doi:10.1016/0022-3115(95)00239-1.

Mayer, M.; Krat, S.; Baron-Wiechec, A.; Gasparyan, Y.; Heinola, K.; Koivuranta, S.; Likonen, J.; Ruset, C.; De Saint-Aubin, G.; Widdowson, A. (2017) Erosion and deposition in the JET divertor during the second ITER-like wall campaign. Physica Scripta, Vol. 2017

Mayer, M. (1997) “SIMNRA User’s Guide”, Tech. Report IPP, 9/113. Rep. IPP 1997

Pacher, G.W. ; Pacher, H.D.; Janeschitz, G.; Kukushkin, A.S.; Kotov, V.;  Reiter, D. (2007) Modelling of DEMO core plasma consistent with SOL/divertor simulations for long-pulse scenarios with impurity seeding, Nuclear Fusion, 47, doi:10.1088/00295515/47/5/012.

Poon, M.; Haasz, A.A.; Davis, J.W. (2008) Modelling deuterium release during thermal desorption of D+-irradiated tungsten. Journal of Nuclear Materials, 374(3), pp. 390-402, doi:10.1016/j.jnucmat.2007.09.028

Qiao, L.; Zhang, H.W.; Xu, J.; Chai, L.Q.; Hu, M.; Wang, P. (2018) Deuterium retention and release behaviours of tungsten and deuterium co-deposited layers. Journal of Nuclear Materials, 502, pp. 247-254, doi:10.1016/j.jnucmat.2018.02.009.

Roth, J.; Tsitrone, E.; Loarer, T.; Philipps, V.; Brezinsek, S.; Loarte, A. et al. (2008) Tritium inventory in ITER plasma-facing materials and tritium removal procedures. Plasma Phys. Contr. Fusion, 50, doi:10.1088/0741-3335/50/10/103001.

Rubel, M.; Philipps, V.; Marot, L.; Petersson, P.; Pospieszczyk, A.; Schweer, B. (2011) Nitrogen and neon retention in plasma-facing materials. Journal of Nuclear Materials, Vol. 415.

Schmid, K.; Krieger, K.; Lisgo, S.W.; Meisl, G.; Brezinsek, S. (2015) WALLDYN simulations of global impurity migration in JET and extrapolations to ITER. Nuclear Fusion, 55, doi:10.1088/0029-5515/55/5/053015.

Taylor, N.; Alejaldre, C.; Cortes, P. (2013) Progress in the safety and licensing of ITER. Fusion Sci. Technol., 64, doi:10.13182/FST13-A18064.

De Temmerman, G.; Baldwin, M.J.; Doerner, R.P.; Nishijima, D.; Schmid, K.  (2008) An empirical scaling for deuterium retention in co-deposited beryllium layers, Nuclear Fusion, 48, doi:org/10.1088/0029-5515/48/7/075008.

De Temmerman, G.; Doerner, R.P.  (2009) Deuterium retention and release in tungsten co-deposited layers, Journal of Nuclear Materials, 389,  doi: 10.1016/j.jnucmat.2009.03.028

United Nations Development Programme Human Development Report 2016: Human Development for Everyone; 2016;

Wang, P.; Jacob, W.; Gao, L.; Elgeti, S.; Balden, M. (2014) Deuterium retention in tungsten films deposited by magnetron sputtering. Physica Scripta, Vol. 2014, T159, DOI: 10.1088/0031-8949/2014/T159/014046.

Wang, P.; Jacob, W.; Elgeti, S. (2015) Deuterium retention in tungsten films after different heat treatments. Journal of Nuclear Materials, 456, pp. 192-199, doi:10.1016/j.jnucmat.2014.09.023.

Widdowson, A.; Coad, J.P.; Alves, E.; Baron-Wiechec, A.; Catarino, N.; Corregidor, V.; Heinola, K.; Krat, S.; Makepeace, C.; Matthews, G.F.; et al. (2019) Deposition of impurity metals during campaigns with the JET ITER-like Wall. Nucl. Mater. Energy, 19, doi:10.1016/j.nme.2018.12.02

Zheng, S.; King, D.B.; Garzotti, L.; Surrey, E.; Todd T.N. (2016) Fusion reactor start-up without an external tritium source. Fusion Engineering and Design, 103, https://doi.org/10.1016/j.fusengdes.2015.11.034

Zibrov, M.; Ryabtsev, S.; Gasparyan, Y.; Pisarev, A. (2016) Experimental determination of the deuterium binding energy with vacancies in tungsten, Journal of Nuclear Materials, 477, pp. 292-297, doi: 10.1016/j.jnucmat.2016.04.052


Keywords

Tungsten, Hydrogen isotopes, DC, HiPIMS, Thermal Desorption Spectroscopy


Tag search Tungsten Hydrogen isotopes DC HiPIMS Thermal Desorption Spectroscopy