Smart Energy and Sustainable Environment , ISSN 2668-957X
2021, Volume 24, Issue 2
Pages 73-88


Athanasios Tiliakos 1,2* , Adriana Marinoiu 1

1 National Research and Development Institute for Cryogenics and Isotopic Technologies - ICSI Rm. Valcea, Uzinei Street no. 4, PO Box Râureni 7, 240050, Râmnicu Vâlcea, Romania
2 National Research and Development Institute for Laser, Plasma and Radiation Physics – INFLPR București, 409 Atomiştilor Street, P.O. Box MG-36, 077125, Măgurele, Ilfov, România

*Corresponding authors: Athanasios Tiliakos, E-mail:, and Adriana Marinoiu, E-mail:

Received 14 May 2021; Received in revised form 12 July 2021; Accepted  15 July 2021; Available online 9 November 2021


Carbon Capture, Utilization, and Storage (CCUS) technologies comprise a set of proposed technological solutions (i.e. methods, measures, implementations, and policies) that seek to trap carbon dioxide – the main form of carbon carrier molecule responsible for the greenhouse effect, originating from human economic activities, and destabilizing the planetary climate – before its release into the atmosphere. The aim and function of CCUS manifest as either preventive measures that lock carbon dioxide permanently underground or in other suitable media (Carbon Capture and Storage, CCS), or as redirecting processes that feed it back to augmented industrial cycles for manufacturing products with positive financial impacts (Carbon Dioxide Utilization, CDU). Following recent initiatives at the European level and in view of the larger picture unfolding at the global theater, this digest review aims to deliver the main points, considerations, and dynamics that drive and formulate modern CCUS initiatives, focusing more on the recently surfaced CDU front. We will explore proposed pathways for materializing CDU by looking carefully on unfolding examples from such global and European arenas. We will then scrutinize plausible scenarios for transposing CDU to Romania to ask – and hopefully answer – the right questions as to how such scenarios can materialize.


ADEME, 2014. Chemical conversion of CO2. Quantification of energy and environmental benefits and economic evaluation of three chemical routes.

Arakawa, H., Aresta, M., Armor, J. N., Barteau, M. A., Beckman, E. J., Bell, A. T., Bercaw, J. E., Creutz, C., Dinjus, E., Dixon, D. A., Domen, K., 2001. Catalysis research of relevance to carbon management: progress, challenges, and opportunities. Chem. Rev. 101(4), 953-96.

Aresta, M., Dibenedetto, A., 2007. Utilisation of CO2 as a chemical feedstock: Opportunities and challenges. Dalt. Trans., 2975-2992.

Aresta, M., Dibenedetto, A., Angelini, A., 2013. The changing paradigm in CO2 utilization, J. CO2 Util. 3-4, 65-73.

Aresta, M., Dibenedetto, A., Angelini, A., 2014. Catalysis for the valorization of exhaust carbon: From CO2 to chemicals, materials, and fuels. Technological use of CO2. ACS Chem. Rev., 114(3), 1709-42.

Bellocchi, S., De Falco, M., Gambini, M., Manno, M., Stilo, T., Vellini, M., 2019. Opportunities for power-to-Gas and Power-to-liquid in CO2-reduced energy scenarios: The Italian case. Energy, 175, 847-61.

Bernstein, L., Bosch, P., Canziani, O., Chen, Z., Christ, R., Riahi, K., 2008. IPCC, 2007: climate change 2007: synthesis report.

Bruhn, T., Naims, H., Olfe-Krautlein, B., 2016. Separating the debate on CO2 utilisation from carbon capture and storage. Environ. Sci. Policy 60, 38-40.

Carton, J., Olabi, A., 2010. Wind/hydrogen hybrid systems: Opportunity for Ireland’s wind resource to provide consistent sustainable energy supply. Energy 35, 4536-4544.

Centi, G., Quadrelli, E. A., Perathoner, S., 2013. Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ. Sci., 6, 1711-31.

Chapman, A. M., Keyworth, C., Kember, M. R., Lennox, A. J. J., Williams, C. K., 2015. Adding value to power station captured CO2: tolerant Zn and Mg homogeneous catalysts for polycarbonate polyol production. ACS Catal., 5(3), 1581-8.

Climate Watch, the World Resources Institute, 2020. Retrieved: 30/04/2010.

Crivellari, A., Cozzani, V., 2020. Offshore renewable energy exploitation strategies in remote areas by power-to-gas and power-to-liquid conversion. Int. J. Hydrog. Energy 45(4), 2936-2953.

CSLF, 2012. CO2 utilisation options – Phase 1 & Phase 2 Reports.

Dominguez-Ramos, A., Singh, B., Zhang, X., Hertwich, E. G., Irabien, A., 2015. Global warming footprint of the electrochemical reduction of carbon dioxide to formate. J. Clean. Prod., 104, 148-55.

Doyle, A., 2020. CRI successfully demonstrates chemical storage with renewable methanol. The Chemical Engineer, published on 21/07/2020, retrieved on 02/05/2021: https://www.

Droege, S., Van Asselt, H., Das, K., Mehling, M., 2016. The trade system and climate action: ways forward under the Paris Agreement. SCJ Int'l L. & Bus. 13, 195.

Ecofys, Fraunhoffer Institute for Systems and Innovation Research, and Öko-Institut, 2019. Methodology for the free allocation of emission allowances in the EU ETS post 2012 – Sector report for the chemical industry.

Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., 2006. 2006 IPCC guidelines for national greenhouse gas inventories.

European Commission, 2011. Energy Roadmap 2050. Impact assessment and scenario analysis.

European Commission, 2013A. Towards an Integrated Strategic Energy Technology (SET) Plan: Research and Innovation Challenges and Needs of the EU Energy System.

European Commission, 2013B. H2Aircraft - CRYOPLANE and the future of flight.

European Commission, 2015A. Energy Union Package – A Framework Strategy for a Resilient Energy Union with a Forward-Looking Climate Change Policy.

European Commission, 2015B. Towards an Integrated Strategic Energy Technology (SET) Plan: Accelerating the European Energy System Transformation.

Gahleitner, G., 2013. Hydrogen from renewable electricity: An international review for power-to-gas pilot plants for stationary applications. Int. J. Hydrogen Energy 38, 2039–61.

GCCSI & PB, 2011. Accelerating the uptake of CCS: industrial use of captured carbon dioxide.

General Secretariat of the Council, 2014. Conclusions on 2030 climate and energy policy framework.

Hansen, J. B., Dybkjær, I., Pedersen, C. F., 2012. SOEC enabled Methanol Synthesis, in 10th European SOFC Forum 2012, A1105.

Hossenfelder, S., 2021. All you need to know about Elon Musk’s Carbon Capture Prize. YouTube Personal Channel of Sabine  Hossenfelder, retrieved on 20/04/2021: GmWpFCjh0Fk&list=WL&index=5&ab_channel=SabineHossenfelder.

Hu, B., Guild, C., Suib, S. L., 2013. Thermal, electrochemical, and photochemical conversion of CO2 to fuels and value-added products. J. CO2 Util. 1, 18-27.

IEA (International Energy Agency), 2012. Energy technology perspectives 2012: Pathways to a clean energy system. France.

IHS Chemical, 2013. Hydrogen – Abstract from the report Chemicals Economic Handbook.

IPCC, 2021. The Intergovernmental Panel on Climate Change.

Kakoulaki, G., Kougias, I., Taylor, N., Dolci, F., Moya, J., Jäger-Waldau, A., 2021. Green hydrogen in Europe – A regional assessment: Substituting existing production with electrolysis powered by renewables. Energy Convers. Manag. 228, 113649.

Kothari, R., Buddhi, D., Sawhney, R. L., 2008. Comparison of environmental and economic aspects of various hydrogen production methods. Renew. Sustain. Energy Rev. 12(2), 553-63.

Langè, S., Pellegrini, L. A., 2013. Sustainable combined production of hydrogen and energy from biomass in Malaysia. Chem. Eng. Trans. 32, 607-12.

Li, B., Duan, Y., Luebke, D., Morreale, B., 2013, Advances in CO2 capture technology: A patent review. Appl. Energy 102, 1439-47.

Maisonnier, G. Steinberger-Wilckens, R., 2007. Deliverable 2.1 and 2.1.a ‘European Hydrogen Infrastructure Atlas’ and ‘Industrial Excess Hydrogen Analysis’- Part II: Industrial surplus hydrogen and markets and production.

Markewitz, P., Kuckshinrichs, W., Leitner, W., Linssen, J., Zapp, P., Bongartz, R., Schreiber, A.,  Müller, T. E., 2012. Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy Environ. Sci. 5(6), 7281-305.

Maslin, M. A., 2020. The road from Rio to Glasgow: a short history of the climate change negotiations. Scott. Geogr. J. 136(1-4), 5-12.

Mesfun, S., Sanchez, D. L., Leduc, S., Wetterlund, E., Lundgren, J., Biberacher, M., Kraxner, F., 2017. Power-to-gas and power-to-liquid for managing renewable electricity intermittency in the Alpine Region. Renew. Energy 107, 361-72.

Mitsui Chemicals Inc., 2009. CSR Report.

Musk Foundation, 2021. XPRIZE Carbon Removal competition website, retrieved on 20/04/2021:

Obergassel, W., Hermwille, L., Oberthür, S., 2020. Harnessing international climate governance to drive a sustainable recovery from the COVID-19 pandemic. Clim. Policy 1-9.

Our World in Data, 2020. Retrieved: 30/04/2010.

Pachauri, R. K., Reisinger, A., 2007. IPCC fourth assessment report. IPCC, Geneva.

Pate, R., Klise, G., Wu, B., 2011. Resource demand implications for US algae biofuels production scale-up. Appl. Energy 88(10), 3377-88.

Pérez-Fortes, M., Schöneberger, J. C., Boulamanti, A., Tzimas, E., 2016A. Methanol synthesis using captured CO2 as raw material: Techno-economic and environmental assessment. Appl. Energy 161, 718-32.

Pérez-Fortes, M., Schöneberger, J.C., Boulamanti, A., Harrison, G., Tzimas, E., 2016B. Formic acid synthesis using CO2 as raw material: Techno-economic and environmental evaluation and market potential. Int. J. Hydrog. Energy 41(37), 16444-62.

Pérez-Fortes, M., Tzimas, E., 2016C. Techno-economic and environmental evaluation of CO2 utilisation for fuel production. Synthesis of methanol and formic acid. JRC Science for Policy Report, EUR 27629 EN, doi: 10.2790/809992.

Peters, M., Köhler, B., Kuckshinrichs, W., Leitner, W., Markewitz, P., Müller, T. E., 2011. Chemical technologies for exploiting and recycling carbon dioxide into the value chain. ChemSusChem 4(9), 1216-40.

Porter, R. T., Fairweather, M., Pourkashanian, M., Woolley, R. M., 2015. The range and level of impurities in CO2 streams from different carbon capture sources. Int. J. Greenh. Gas Control 36, 161-74.

Quadrelli, E. A., Centi, G., Duplan, J. L., Perathoner, S., 2011. Carbon dioxide recycling: emerging large‐scale technologies with industrial potential. ChemSusChem 4(9), 1194-215.

Rao, S., Chandur, S., 2021. Moving the topic of climate change from politics to economics. Theories of Change: Change Leadership Tools, Models and Applications for Investing in Sustainable Development, 487-500.

Redissi, Y., Bouallou, C., 2013. Valorization of carbon dioxide by co-electrolysis of CO2/H2O at high temperature for syngas production. Energy Proc. 37, 6667-78.

Roddy, D. J., 2012. Development of CO2 network for industrial emissions. J. CO2 Util. 91, 459-65.

Rubin, E., Mantripragada, H., Marks, A., Versteeg, P., Kitchin, J., 2012. The outlook for improved carbon capture technology. Prog. Energy Combust. Sci. 38(5), 630-71.

Simoes, S., Nijs, W., Ruiz, P., Sgobbi, A., Radu, D., Bolat, P., Thiel, C., Peteves, S., 2013. The JRC-EU-TIMES model. Assessing the long-term role of the SET Plan. Publications Office of the European Union, Luxembourg.

Styring, P., Quadrelli, E. A., Armstrong, K., 2015. Carbon dioxide utilisation: Closing the carbon cycle. 1st ed., Elsevier.

Takeshita, T., 2012. Assessing the co-benefits of CO2 mitigation on air pollutants emissions from road vehicles. Appl. Energy 97, 225-237.

UNFCCC, 1992. United Nations Framework Convention on Climate Change. New York: United Nations, General Assembly.

UNFCCC, 2015. Paris Agreement to the United Nations Framework Convention on Climate Change, Dec. 12, 2015, T.I.A.S. No. 16-1104.

von der Assen, N., Voll, P., Peters, M., Bardow, A., 2014. Life cycle assessment of CO2 capture and utilisation: a tutorial review. Chem. Soc. Rev. 43, 7982-94.


Carbon Dioxide Utilization (CDU), Carbon Capture & Storage (CCS)

Tag search Carbon Dioxide Utilization CDU Carbon Capture Storage CCS