3-D graphene growth by chemical vapor deposition (CVD) for energy applications
National Research and Development Institute for Cryogenics and Isotopic Technologies - ICSI Rm. Valcea, Uzinei Street no. 4, PO Box Râureni 7, 240050, Râmnicu Vâlcea, Romania
*Corresponding author: Daniela Ion-Ebrasu, E-mail: daniela.ebrasu@icsi.ro
Received 04 February 2020, Received in revised form 23 February 2020, Accepted 28 February 2020, Available online 06 March 2020Abstract
The tremendous need for more efficient energy systems such as fuel cells, lithium ion batteries and supercapacitors production led to materials development of which 2D and 3D graphene are the most important in terms of better electrical conductivity, large area, easy of functionalization. The influence of few kinetic parameters on 3D graphene growth on Ni foam substrate catalyst is discussed in this study, among them being: the working temperature in the reaction chamber, time of reaction and ethylene gas flow used as carbon source during the chemical vapor deposition (CVD) process. In order to preserve the 3D-graphene shape during their transfer, the nickel matrix was removed without using poly(methyl methacrylate) (PMMA) as post growth stabilizer of the graphene foam. The samples were characterized by Raman spectroscopy, Scanning Electron Microscopy (SEM), Optical Microscopy (OM). The Brunauer-Emmett-Teller (BET) method was used to calculate the specific surface area, and the pore volume and pore radius were estimated by Barret-Joyner-Halenda method. The results have shown that a 1.6 mm thickness multilayer porous graphene that reproduces the Ni foam was obtained. The pore radius is about 1.9 nm, surface area 9.821 m2/g, and the average graphene mass density is about 12 mg/cm3. As compared with other methods, by CVD is possible to obtain in one step, large area (up to 100 cm2 using the CVD installation presented in this paper) of graphene foam, with high porosity and plane surface that allow directly utilization for different applications.
References
3D graphene network investigation by Raman spectroscopy. Optoelectronics and advanced materials
Rapid communications, 11(5-6), 368-372.
Graphene: A Peculiar Allotrope Of Carbon
Himalayan Physics, 3(3), 87-88. https://doi.org/10.3126/hj.v3i0.7314.
Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst
Nano Lett., 10(10), 4128-4133. https://doi.org/10.1021/nl102355e.
CVD Synthesis and Characterization of Graphene Thin Films, Army Research Laboratory
Adelphi, MD 20783-1197. ARL-TR-5047; U.S. http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA513793.
Freestanding three-dimensional graphene foam gives rise to beneficial electrochemical signatures within non-aqueous media
Journal of Materials Chemistry A, 1(19), 5962-5972, doi.org/10.1039/C3TA10727B.
Graphene Modified Fluorinated Cation-Exchange Membranes for Proton Exchange Membrane Water Electrolysis International Journal of Hydrogen Energy, 44(21), 10190-10196, doi.org/10.1016/j.ijhydene.2019.02.148.
3D graphene based materials for energy storage
Current Opinion in Colloid & Interface Science 20(5) 429–438. http://dx.doi.org/10.1016/j.cocis.2015.11.005
Incommensurate Graphene Foam as a High Capacity Lithium Intercalation Anode
Sci Rep 7, 39944. https://doi.org/10.1038/srep39944
Graphene: status and prospects
Science, 324(5934), 1530-1534. DOI: 10.1126/ science.1158877
The rise of graphene
Nature Materials, 6, 183-191, doi.org/10.1038/nmat1849
Scalable production of graphene via wet chemistry: progress and challenges
Materials Today 18(2): 73-78, doi: 10.1016/j.mattod.2014.08.019
Graphene-Based Supercapacitor with an Ultrahigh Energy Density
Nano Lett., 10(12), 4863-4868, doi.org/10.1021/nl102661q.
Raman spectroscopy in graphene
Physics Reports, 473(5-6), 51-87, doi.org/10.1016/j.physrep.2009.02.003
Iodine-doped graphene for enhanced electrocatalytic oxygen reduction reaction in proton exchange membrane fuel cell applications
Journal of Electrochemical Energy Conversion and Storage, 14(3), 79-97, doi.org/10.1115/1.4036684
Electric field effect in atomically thin carbon films
Science, 306(5696), 666-669, DOI: 10.1126/science.1102896
Two-dimensional atomic crystals
Proceeding of the National Academy of Science of the United State of America (PNAS), 102(30), 10451-10453, doi.org/10.1073/pnas.0502848102
The application of graphene in lithium ion battery electrode materials
SpringerPlus, 3, 585, doi.org/10.1186/2193-1801-3-585.
Keywords
3D-graphene foam, nickel, CVD growth
Tag search 3D-graphene foam nickel CVD growth
ARCHIVE
ISSN 1582-2575
Show more...