Smart Energy and Sustainable Environment , ISSN 2668-957X
2024, Volume 27, Issue 2
Pages 73-84

https://doi.org/10.46390/j.smensuen.27224.461


AN OVERVIEW OF METHODS FOR LITHIUM SEPARATION

Nadia Paun * , Violeta Niculescu , Ramona Ionela Zgavarogea , Silviu Laurentiu Badea , Andreea Maria Iordache

National Research and Development Institute for Cryogenics and Isotopic Technologies - ICSI Rm. Valcea, Uzinei Street no. 4, PO Box Râureni 7, 240050, Râmnicu Vâlcea, Romania

*Corresponding authors: Nadia Paun, e-mail: Nadia.paun@icsi.ro

Received 09 November 2023
Received in revised form 04 October2024
Accepted 04 October2024
Available online 13 November 2024


Abstract

Lithium (Li) is the lightest metal in nature. Natural lithium contains two stable isotopes 6Li (7.43%) and 7Li (92.57%), both playing a crucial role in the nuclear industry. Because of its high reactivity, pure elemental lithium is not found in nature. Instead, it may be seen as a constituent of salts or other compounds. Similarly, commercial lithium is available as lithium carbonate, a stable substance easily converted to other salts or chemicals. Production, processing, and purification of lithium are costly processes. The need to separate lithium appeared with the industry's transition from non-renewable to non-polluting. Recently, new techniques for lithium recovery have been developed at the laboratory scale with the potential for industrial production, such as adsorption-desorption cycling and diffusion dialysis pulsed electrochemical intercalation, and membrane separations [J. Hou et al., 2021]. The membrane-based separation processes have produced superior results for extracting Li+ and lithium isotopes enrichment. This overview will integrate the methods for lithium isotope separation using different types of membranes and their advantages and disadvantages.


References

Badea S. L., Niculescu V. C., Iordache A. M. (2023). New Trends in Separation Techniques of Lithium Isotopes: A Review of Chemical Separation Methods. Materials, 16(10), 3817; https://doi.org/10.3390/ma16103817

Bazrgar M.B., Moheb A., Dinari M. (2020). Preparation of lithium ion-selective cation exchange membrane for lithium recovery from sodium-contaminated lithium bromide solution by electrodialysis process. Desalination, 486, 114476, https://doi.org/10.1016/j.desal.2020.114476

Bigeleisen J. (1965). Chemistry of Isotopes: Isotope chemistry has opened new areas of chemical physics, geochemistry, and molecular biology. SCIENCE, 147, Issue 3657 pp. 463-471, DOI: 10.1126/science.147.3657.4.

de Oliviera G.A.C., Bustillos J.O.V., Ferreira J.C., Bergamaschi V.S., de Moraes R.M., Gimenez M.P., Miyamoto F.K., Seneda J.A. (2017). Applications of lithium in nuclear energy. International Nuclear Atlantic Conference - INAC 2017, October, 22-27, Belo Horizonte, Brazil

Díaz Nieto C. H., Rabaey K., Flexer V. (2020) Membrane electrolysis for the removal of Na+ from brines for the subsequent recovery of lithium salts, Separation and Purification Technology., 252, 117410, https://doi.org/10.1016/j.seppur.2020.117410

Dolan J. T. (2017).  Introduction, Molten Salt Reactors and Thorium Energy, Woodhead Publishing, 1-12, ISBN 9780081011263, https://doi.org/10.1016/B978-0-08-101126-3.00001-4

Dong Y., Zhu Q., Zou W., Fang J., Yang Z., Xu T. (2022) Dibenzo-15-crown-5-based Troger’s Base membrane for 6Li+/7Li+ separation. Separation and Purification Technology, 309, 122990, https://doi.org/10.1016/j.seppur.2022.122990

Hou J., Zhang H., Thornton A. W., Hill A. J., Wang H., Konstas K. (2021) Lithium Extraction by Emerging Metal–Organic Framework-Based Membranes. Advanced Functional Materials, 31(46), 2105991; https://doi.org/10.1002/adfm.202105991

Huang C., Xu T., Zhang Y., Xue Y., Chen G., (2007). Application of electrodialysis to the production of organic acids: state-of-the-art and recent developments. Journal of Membrane Science, 288(1-2), 1-12, https://doi.org/10.1016/j.memsci.2006.11.026

Iurash C., Nikonenko V., Pismenskaya N., Zabolotsky V., Volodina,E. (1999). Dependence of salt and water ion fluxes through ion-exchange membranes under electrodialysis on the ion-exchange bed composition, Desalination 124 (1999) 105–113, https://doi.org/10.1016/S0011-9164(99)00094-6

Kazemzadeha H., Karimi-Sabetb J., Towfighi Darian J., Adhamia A., (2020). Evaluation of polymer inclusion membrane efficiency in selective separation of lithium ion from aqueous solution. Separation and Purification Technology; https://doi.org/10.1016/j.seppur.2020.117298

Kimura Y., Saka M., (2014). Trial fabrication of Al micro-materials by electromigration using buildup structure, Recent Advances in Structural Integrity Analysis - Proceedings of the International Congress (APCF/SIF-2014), Woodhead Publishing, 510-514, 9780081002032, https://doi.org/10.1533/9780081002254.510

Murali A., Zhang Z., Free M. L., Sarswat P. K. (2021). A Comprehensive Review of Selected Major Categories of Lithium Isotope Separation Techniques. Phys. Status Solidi A, 218, 21003402100340, Doi: 10.1002/pssa.202100340

Pei H., Yan F., Wang Z., Liu C., Hou S., Ma X., Li J., Cui Z., He B., Ranil S. W. (2019).  Polysulfone-graft-4′- aminobenzo-15-crown-5-ether based tandem membrane chromatography for efficient adsorptive separation of lithium isotopes. Journal of Chromatography A, 1602, 206-216, https://doi.org/10.1016/j.chroma.2019.05.018

Siekierka A, Bryjak M, Razmjou A, Kujawski W, Nikoloski AN, Dumée LF. (2022). Electro-Driven Materials and Processes for Lithium Recovery—A Review. Membranes 12(3):343, https://doi.org/10.3390/membranes12030343

Wang C., Zhang P., Meng Q., Xue Z., Zhou X., Ju H., Mao L., Shao F., Jing Y., Jia Y., Sun, J. (2023). Electromigration separation of lithium isotopes: The effect of electrolytes. Journal of Environmental Chemical Engineering, Volume 11(3), 109933, https://doi.org/10.1016/j.jece.2023.109933

Wang L., Rehman D., Sun P. F., Deshmukh A., Zhang L., Han Q., Yang Z., Wang Z., Park H. D., Lienhard J. H., Tang C. Y. (2021). “Novel Positively Charged Metal-Coordinated Nanofiltration Membrane for Lithium Recovery”, ACS Appl. Mater. Interfaces, 13(14), 16906-16915, https://doi.org/10.1021/acsami.1c02252

Wu W., Lu S., (2023). Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Data Preprocessing and Improved ELM. IEEE Transactions on Instrumentation and Measurement 72 1557-9662, Doi: 10.1109/TIM.2023.3267362

Yang Z., Sun P.-F., Li X., Gan B., Wang L., Song X., Park H.-D., Tang C. Y. (2020).  A Critical Review on Thin-Film Nanocomposite Membranes with Interlayered Structure: Mechanisms, Recent Developments, and Environmental Applications. Environ. Sci. Technol., 54, 15563−15583, https://doi.org/10.1021/acs.est.0c05377

Yang Z., Wu Y., Wang J., Cao B., Tang C. Y. (2016). In situ reduction of silver by polydopamine: A novel antimicrobial modification of a thin-film composite polyamide membrane. Environ. Sci. Technol., 50, 9543−9550, https://doi.org/10.1021/acs.est.6b01867

Yaolong L., Feng Y., Hongchang P., Jianxin L., Zhenyu C., Benqiao H., Lingyun W. Preparation of PSf-g-BN15C5/NWF composite membrane with sponge-like pore structure for lithium isotopes adsorptive separation, Journal of the Taiwan Institute of Chemical Engineers, Volume 91, 2018, Pages 507-516, https://doi.org/10.1016/j.jtice.2018.05.031

Zeng Y., Pe H., Wan Z., Yan F., Li J., Cui Z., He B. (2018) Chitosan-graft-benzo-15-crown-5-ether/PVA Blend Membrane with Sponge-Like Pores for Lithium Isotope Adsorptive Separation. ACS Omega, 3(1), 554–561, doi: 10.1021/acsomega.7b01625

Zhang Z., Jia Y., Liu B., Sun H., Jing Y., Zhang Q., Shao F., Qi M., Yao Y. (2020). Extraction and separation of lithium isotopes by using organic liquid film extraction system of crown ether-ionic liquid. Fusion Engineering and Design, 161, 112015, https://doi.org/10.1016/j.fusengdes.2020.112015


Keywords

crown ether, electromigration, lithium separation, membrane


Tag search crown ether electromigration lithium separation membrane