Progress of Cryogenics and Isotopes Separation , ISSN: 1582-2575
2018, Volume 21, Issue 2
Pages 73-80

Fabrication technology of self-standing binder free LiMn2O4/MWCNT electrode by vacuum filtration method

Constantin Bubulinca *

National Research and Development Institute for Cryogenics and Isotopic Technologies - ICSI Rm. Valcea, Uzinei Street no. 4, PO Box Râureni 7, 240050, Râmnicu Vâlcea, Romania

*Corresponding author: Constantin Bubulinca, E-mail: Constantin.Bubulinca@icsi.ro, phone: 00250732744, Fax: 0250732746

Published: 2018



Abstract

This paper describes fabrication technology of highly conductive lithium manganese oxide and multiwall carbon nanotubes (LiMn2O4/MWCNT) binder free self-standing electrode by vacuum filtration method. Active material composed by LiMn2O4 (LMO) has been modified using mechanochemistry (ball milling method), dispersed and then filtrated together with supporting layer based on carbon nanotubes (CNT) to obtain flexible cathode. Evolution of particles size after fragmentation procedure is revealed by X-ray diffraction (XRD) and laser diffraction method. The material didn’t suffer any changes after 60 minutes of grinding. Morphology of surface is revealed by field emission scanning electron microscopy (FE-SEM) endowed with an EDX detector. Electrochemical impedance spectroscopy shows effective charge transport and small resistance during intercalation/deintercalation of Li ions. Likewise, cyclic voltammetry shows the presence of two oxidation/reduction peaks, stability of material and a high reversibility with about 78 mAh/g after first cycle of charging-discharging test.


References

  • Y. Cheng, Z. Chen, M. Zhu, Y. Lu, 2015
    Polyacrylic acid assisted assembly of oxide particles and carbon nanotubes for high-performance flexible battery anodes
    Advances Energy Materials, 5(6), doi:10.1002/aenm.201401207

  • H. Chen, S. Zeng, M. Chen, Y. Zhang, Q. Li, 2015
    Fabrication and functionalization of carbon nanotube films for high-performance flexible supercapacitors
    Carbon, 92:271-296

  • X. Fang, C. Shen, M. Ge, J-+, 2015
    High-power lithium ion batteries based on flexible and light-weight cathode of LiNi0.5Mn1.5O4/carbon nanotube film
    Nano Energ., 12:43-51, doi.org/10.1016/j.nanoen.2014.11.052

  • M. Frías, M. I. Sánchez de Rojas, M. P. Luxán, N. García, September 1991
    Determination of specific surface area by the laser diffraction technique. Comparison with the blaine permeability method
    Cement and Concrete Research, Volume 21, Issue 5, Pages 709-717a

  • X. Gao, Y. Sha, Q. Lin, R. Cai, M. O. Tade, Z. Shao, 2015
    Combustion-derived nanocrystalline LiMn2O4 as a promising cathode material for lithium-ion batteries
    Journal of Power Sources, 275:38-44

  • M. D. Lima, S. Fang, X. Lepró, C. Lewis, R. Ovalle-Robles, J. Carretero-González, X. Jia, Z. Chen, A. Suwarnasarn, L. Rice, X. Wang, H. Sohn, Q. Zhang, B. M. Wu, F. Wei, Y. Lu, 2012
    High-performance flexible lithium-ion electrodes based on robust network architecture
    Energy anf Environment Science, 5(5):6845-6849, DOI: 10.1039/c2ee03110h

  • X. Jia, Y. Kan, X. Zhu, G. Ning, Y. Lu, F. Wei, 2014
    Building flexible Li4Ti5O12/CNT lithium-ion battery anodes with superior rate performance and ultralong cycling stability
    Nano Energy, 10:344-352

  • X. Jia, Q. Zhang, M.-Q. Zhao, G.-H. Xu, J.-Q. Huang, W. Qian, Y. Lu, F. Wei, 2012
    Dramatic enhancements in toughness of polyimide nanocomposite via longCNT-induced long-range creep
    Journal of Materials Chemistry, 22:7050-7056

  • Z. Liu, J.Y. Lee, H. Lindner, 2001
    Effects of conducting carbon on the electrochemical performance of LiCoO2 and LiMn2O4 cathodes
    Journal of Power Sources, 97-98:361-365

  • S. Luo, K. Wang, J. Wang, K. Jiang, Q. Li, S. Fan, 2012
    Binder-free LiCoO2/carbon nanotube cathodes for high-Performance lithium ion batteries
    Adv. Mater., 24:2294-2298, doi.org/10.1002/adma.201104720

  • E. C. Martínez, M. E. Kozlov, J. Oh, N. Rawat, 2011
    Biscrolling nanotube sheets and functional guests into yarns
    Science, 331:51-55

  • L. Ning, Y. Wu, S. Fang, E. Rahm and R. Holze, 2004
    Materials prepared for lithium ion batteries by mechanochemical methods
    Journal of Power Sources, 133(2):229-242

  • W. Porcher, B. Lestriez, S. Jouanneau, D. Guyomard, 2010
    Optimizing the surfactant for the aqueous processing of LiFePO4 composite electrodes
    Journal of Power Sources, 195(9):2835-2843

  • P. Randhawa, J.-S. Park, S. Sharma, P. Kumar, M.-S. Shin, S. S. Sekhon, 2012
    Effect of surfactant (Triton X-100) concentration on dispersion and functionalization of multiwall carbon nanotubes
    Journal of Nanoelectronics and Optoelectronics, 7(3):279-286

  • K. C. Ruthiya, J. van der Schaaf, B. F. M. Kuster, J. C. Schouten, 2005
    Similar effect of carbon and silica catalyst support on the hydrogenation reaction rate in organic slurry reactors
    Chemical Engineering Science, 60(22):6492-6503

  • M. E. Spahr, D. Goers, A. Leone, S. Stallone, Eusebiu. Grivei, 2011
    Development of carbon conductive additives for advanced lithium ion batteries
    Journal of Power Sources, 196(7):3404-3413

  • A. Varzi, C. Täubert, M. Wohlfahrt-Mehrens, M. Kreis, W. Schütz, 2011
    Study of multi-walled carbon nanotubes for lithium-ion battery electrodes
    J. Power Sources, 196(6): 3303-3309, ISSN: 0378-7753

  • C. Wei, Jianxin Shen, Jiayan Zhang, Huayong Zhang and Chaofeng Zhu, 2014
    Effect of ball milling on the crystal face of spinel LiMn2O4
    RSC Adv., 4(84): 44525- 44528, DOI: 10.1039/C4RA03875D

  • X. Wang, G. Shi, 2015
    Flexible graphene devices related to energy conversion and storage
    Energy and Environmental Science, 8:790-823

  • Z. Zhang, Changming Qu, Tao Zheng, Yanquing Lai, Jie Li, 2013
    Effect of Triton X100 as Dispersant on Carbon Black for LiFePO4 Cathode
    International Journal of Electrochemical Science, 8(5):6722-6733

  • Keywords

    Li ion battery, vacuum filtration method, self standing cathode, flexible electrode


    Tag search Li ion battery vacuum filtration method self standing cathode flexible electrode