
TRENDS OF THE YEARS: SYSTEMATIC LITERATURE REVIEW ANALYSIS BASED ON THE METHODOLOGICAL PRINCIPLES OF THE ELECTROMIGRATION PROCESS
1 National Research and Development Institute for Cryogenics and Isotopic Technologies - ICSI Rm. Valcea, Uzinei Street no. 4, PO Box Râureni 7, 240050, Râmnicu Vâlcea, Romania
2 National Research and Development Institute for Forestry "Marin Drăcea" Calea Bucovinei, 73 bis, 725100, Câmpulung Moldovenesc, Romania
*Corresponding author: Constantin Nechita, e-mail: ncincds@gmail.com.
Received 10 January 2024Received in revised form 22 October 2024
Accepted 22 October 2024
Available online 13 November 2024
Abstract
Green emerging technologies are needed for the growing global demand economy and to respond to environmental problems caused by industrialization. The most significant global issue is the transition from fossil fuel to sustainable green energy. Even if a high abundance of lithium isotopes means suitable materials for nuclear or electrical industries, the currently used method for producing lithium isotopes is associated with severe Hg environmental pollution. To achieve global targets assumed to mitigate climate change and environmental pollution, several attempts to find promising eco-friendly alternatives indicated electromigration separation as the most suitable method. Here, we applied a systematic literature synthesis using the PRISMA procedure to review peer-reviewed literature that focuses on the technologies and methodologies for the separation of 6Li and 7Li. Documents were extracted from Web of Science, Scopus, and Google Scholar databases and were subjected to quantitative and qualitative assessment based on co-occurrence analysis. We evaluated the limitations of existing methods and technologies, creating syntheses with characteristics and performances of the crown ethers used in the separation process. The progress in developing crown ethers with increased action capacity in the separation process of 6Li and 7Li ions was detailed. The main conclusion was that the analyzed methods are feasible for performing the process of separating the 6Li and 7Li isotopes, considering the limitation of solubility and the high cost of production.
References
Ault T., Brozek K., Fan L., Folsom M., Kim J., Zeismer J. (2012). Lithium isotope enrichment: feasible domestic enrichment alternatives. University of California: Berkeley, CA, USA, 3-4.
Agreement, P. (2015). Paris agreement. In Report of the Conference of the Parties to the United Nations Framework Convention on Climate Change (21st Session, 2015: Paris). Retrived December (Vol. 4, p. 2017). HeinOnline.
Ban Y., Nomura M., Fujii Y. (2002). Chromatographic separation of lithium isotopes with silica based monobenzo-15-crown-5 resin. Journal of nuclear science and technology, 39(3), 279-281.
Betts R. H., Bron J. (1977). A discussion of partial isotope separation by means of solvent extraction. Separation Science, 12(6), 635-639.
Bigeleisen J., Mayer M. G. (1947). Calculation of equilibrium constants for isotopic exchange reactions. The Journal of Chemical Physics, 15(5), 261-267.
Cui L., Li S., Kang J., Yin C., Guo Y., He H., Cheng F. (2021). A novel ion-pair strategy for efficient separation of lithium isotopes using crown ethers. Separation and Purification Technology, 274, 118989.
Cui L., Yang X., Wang J., He H., Guo Y., Cheng F., Zhang S. (2019). Theoretical prediction of 6Li/7Li separation in solvent extraction system using Urey model. Chemical Engineering Journal, 358, 435-445.
Figueroa L., Barton S., Schull W., Razmilic B., Zumaeta O., Young A., ... Ilgren E. (2012). Environmental lithium exposure in the North of Chile—I. Natural water sources. Biological trace element research, 149, 280-290.Giegerich, T., Battes, K., Schwenzer, J. C., & Day, C. (2019). Development of a viable route for lithium-6 supply of DEMO and future fusion power plants. Fusion Engineering and Design, 149, 111339.
Gutierrez J. S., Navedo J. G., Soriano-Redondo A. (2018). Chilean Atacama site imperilled by lithium mining. Nature, 557(7706), 492-493.
Hoshino T., Terai T., 2011. High-efficiency technology for lithium isotope separation using an ionic-liquid impregnated organic membrane. Fusion Engineering and Design, 86, 2168–2171.
https://www.gminsights.com/industry-analysis/lithium-ion-battery-market
Ishikawa A., Sasaki M., Narita S., Takeuchi A., Ohki H., Yoshino K. (2017). Chromatographic formation of a triadic band of lithium in hydrated LTA zeolite: An investigation on lithium isotope separation effects by ion exchange. Microporous and Mesoporous Materials, 248, 115-121.
Jepson B. E., Cairns G. A. (1979). Lithium isotope effects in chemical exchange with (2, 2, 1) cryptand (No. MLM-2622). Mound Facility, Miamisburg, OH (USA).
Kudryavtsev P.G. (2016). Lithium in nature, application, methods of extraction. Journal "Scientific Israel-Technological Advantages”, 18(3), 63-83
Li L., Feng M., Wang M., Jiao Z., Li J., Dong L., Yan F. (2021). Crown ether functionalized polysulfone membrane coupling with electric field for Li+ selective separation. Journal of the Taiwan Institute of Chemical Engineers, 123, 87-95.
Liu Y., Liu F., Ye G., Pu N., Wu F., Wang Z., ... Chen J. (2016). Macrocyclic ligand decorated ordered mesoporous silica with large-pore and short-channel characteristics for effective separation of lithium isotopes: synthesis, adsorptive behavior study and DFT modeling. Dalton Transactions, 45(41), 16492-16504.
Lunde Seefeldt J. (2020). Lessons from the lithium triangle: considering policy explanations for the variation in lithium industry development in the "Lithium triangle" countries of Chile, Argentina, and Bolivia. Politics & Policy, 48(4), 727-765.
Mao L., Zhang P., Ju H., Zhou X., Xue Z., Wang C., ... Jing Y. (2022). Solvent extraction for lithium isotope separation by 4-NO2-B15C5/[BMIm][NTf2] system. Journal of Molecular Liquids, 367, 120357.
McCormick K., Kautto N. (2013). The bioeconomy in Europe: An overview. Sustainability, 5(6), 2589-2608.
Miatto A., Reck B. K., West J., Graedel T. E. (2020). The rise and fall of American lithium. Resources, Conservation and Recycling, 162, 105034.
Mincher B. J., Wishart J. F. (2014). The radiation chemistry of ionic liquids: a review. Solvent Extraction and Ion Exchange, 32(6), 563-583.
Moher D., Liberati A., Tetzlaff J., Altman D. G. (2009). Academia and clinic annals of internal medicine preferred reporting items for systematic reviews and meta-analyses. Annu Intern Med, 151(4), 264-9.
Mulrow C. D. (1987). The medical review article: state of the science. Annals of internal medicine, 106(3), 485-488.
Murali A., Zhang Z., Free M. L., Sarswat P. K. (2021). A comprehensive review of selected major categories of lithium isotope separation techniques. Physica Status Solidi (a), 218(19), 2100340.
Nishizawa K., Ishino S. I., Watanabe H., Shinagawa M. (1984). Lithium isotope separation by liquid-liquid extraction using benzo-15-crown-5. Journal of nuclear science and technology, 21(9), 694-701.
Oi T., Kondoh A., Ohno E., Hosoe M., 1993. Lithium Isotope Effects in Cation Exchange Chromatography of Lithium Lactate in Water-Dimethyl Sulfoxide and Water-Acetone Mixed Solvent Media. Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences 48, 811–818.
Opitz A., Badami P., Shen L., Vignarooban K., Kannan A. M. (2017). Can Li-Ion batteries be the panacea for automotive applications?. Renewable and Sustainable Energy Reviews, 68, 685-692.
Ouadi A., Klimchuk O., Gaillard C., Billard I. (2007). Solvent extraction of U (VI) by task specific ionic liquids bearing phosphoryl groups. Green chemistry, 9(11), 1160-1162.
Pei H., Yan F., Wang Z., Liu, C., Hou, S., Ma, X., ... & Wickramsinghe, S. R. (2019a). Polysulfone-graft-4′-aminobenzo-15-crown-5-ether based tandem membrane chromatography for efficient adsorptive separation of lithium isotopes. Journal of Chromatography A, 1602, 206-216.
Pei H., Yan F., Liu H., Li T., Wang M., Li J., ... He B. (2019b). Formoxylbenzo-15-crown-5 ether functionalized PVA/NWF composite membrane for enhanced 7Li+ enrichment. Journal of the Taiwan Institute of Chemical Engineers, 97, 496-502.
Putra A.R., Tachibana Y., Tanaka M., Suzuki T., 2018. Lithium isotope separation using displacement chromatography by cation exchange resin with high degree of cross-linkage. Fusion Engineering and Design 136, 377–380.
Putra A.R., Tachibana Y., Tanaka M., Suzuki T., 2018. Lithium isotope separation using displacement chromatography by cation exchange resin with high degree of cross-linkage. Fusion Engineering and Design 136, 377–380.
Sacks H. S., Berrier J., Reitman D., Ancona-Berk V. A., Chalmers T. C. (1987). Meta-analyses of randomized controlled trials. New England Journal of Medicine, 316(8), 450-455.
Sacks H. S., Reitman D., Pagano D., Kupelnick B. (1996). Meta-analysis: an update. The Mount Sinai journal of medicine, New York, 63(3-4), 216-224.
Sagan S. D. (2000). The commitment trap: why the United States should not use nuclear threats to deter biological and chemical weapons attacks. International Security, 24(4), 85-115.
Shi C., Duan D., Jia Y., Jing Y. (2014). A highly efficient solvent system containing ionic liquid in tributyl phosphate for lithium ion extraction. Journal of Molecular Liquids, 200, 191-195.
Song J. F., Nghiem L. D., Li X. M., He T. (2017). Lithium extraction from Chinese salt-lake brines: opportunities, challenges, and future outlook. Environmental Science: Water Research & Technology, 3(4), 593-597.
Sun X. L., Zhou W., Gu L., Qiu D., Ren D. H., Gu Z. G., Li Z. (2015). Liquid–liquid extraction to lithium isotope separation based on room-temperature ionic liquids containing 2, 2′-binaphthyldiyl-17-crown-5. Journal of Nuclear Science and Technology, 52(3), 332-341.
Sun Y., Wang Q., Wang Y., Yun R., Xiang X. (2021). Recent advances in magnesium/lithium separation and lithium extraction technologies from salt lake brine. Separation and Purification Technology, 256, 117807.
Suzuki T., Tachibana Y., Matsumoto K., Putra A.R., Aikawa F., Sanduinjud U., Tanaka M., 2017. Lithium Isotope Separation using Cation Exchange Resin with High Cross-Linkage. Energy Procedia 131, 146–150.
Tachibana Y., Vidyadharan Nair V., Mohan S., Suzuki T. (2020). Chromatographic fractionation of lithium isotope in aqueous solution using bifunctional ion-exchange resin. Separation Science and Technology, 55(12), 2183-2192.
Wang C., Ju H., Zhou X., Zhang P., Xue Z., Mao L., ... Sun J. (2022b). Separation of lithium isotopes: Electromigration coupling with crystallization. Journal of Molecular Liquids, 355, 118911.
Wang C., Zhang P., Ju H., Xue Z., Zhou X., Mao L., ... Sun J. (2022a). Electromigration separation of lithium isotopes: The multiple roles of crown ethers. Chemical Physics Letters, 787, 139265.
Wang M., Sun J., Zhang P., Huang C., Zhang Q., Shao F., ... Jia Y. (2020). Lithium isotope separation by electromigration. Chemical Physics Letters, 746, 137290.
Wu F., Ye G., Yi R., Sun T., Xu C., Chen J. (2016). Novel polyazamacrocyclic receptor decorated core–shell superparamagnetic microspheres for selective binding and magnetic enrichment of palladium: synthesis, adsorptive behavior and coordination mechanism. Dalton transactions, 45(23), 9553-9564.
Xiao J., Jia Y., Shi C., Wang X., Wang S., Yao Y., Jing Y. (2017). Lithium isotopes separation by using benzo-15-crown-5 in eco-friendly extraction system. Journal of Molecular Liquids, 241, 946-951.
Xiao J., Jia Y., Shi C., Wang X., Yao Y., Jing Y. (2016). Liquid-liquid extraction separation of lithium isotopes by using room-temperature ionic liquids-chloroform mixed solvent system contained benzo-15-crown-5. Journal of Molecular Liquids, 223, 1032-1038.
Zhang P., Wang M., Sun J., Shao F., Jia Y., Jing Y. (2019). Lithium isotope green separation using water scrubbing. Chemistry Letters, 48(12), 1541-1543.
Zhang Q., Jia Y., Sun J., Zhang P., Huang C., Wang M., ... Jing Y. (2021). Lithium isotope separation effect of N-phenylaza-15-crown-5. Journal of Molecular Liquids, 330, 115467.
Zhang Z., Murali A., Sarswat P. K., Free M. L. (2020). High-efficiency lithium isotope separation in an electrochemical system with 1-butyl-3-methylimidazolium dicyanamide, 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide, and diethyl carbonate as the solvents. Separation and Purification Technology, 253, 117539.
Zhao Y., Ao Y. Y., Chen J., Song H. T., Huang W., Peng J. (2016). Density functional theory studies of the structures and thermodynamic parameters of Li+-crown ether complexes. Acta Physico-Chimica Sinica, 32(7), 1681-1690.
Keywords
lithium isotopes separation;
lithium electromigration;
lithium crystallization;
PRISMA
Tag search lithium isotopes separationlithium electromigrationlithium crystallizationPRISMA

ARCHIVE

ISSN 1582-2575
Show more...