
STATISTICAL ANALYSIS OF Li CONCENTRATION AND THE 6Li/7Li ISOTOPIC RATIO FROM SPECIFIC PROVENANCE ENVIRONMENTS
1 National Research and Development Institute for Cryogenics and Isotopic Technologies - ICSI Rm. Valcea, Uzinei Street no. 4, PO Box Râureni 7, 240050, Râmnicu Vâlcea, Romania
2 National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str. 400293 Cluj-Napoca, Romania
3 National Research and Development Institute for Forestry "Marin Drăcea" Calea Bucovinei, 73 bis, 725100, Câmpulung Moldovenesc, Romania
4 Constantin Brancoveanu University, Bulevardul Nicolae Bălcescu 39, 240177, Râmnicu Vâlcea, Romania
*Corresponding authors: Remus Grigorescu griremus@yahoo.com, ncincds@gmail.com
Received: 11 January 2024 Received in revised form 10 March 2024 Accepted 16 April 2024 Available online 17 April 2024Abstract
Starting from the necessity of a geospatial footprint existence of mineral waters in Romania, this study followed lithium concentration distribution and the 6Li/7Li isotopic ratio using the ICP-MS technique. Stable isotopes are potent tracers of chemical and biological transformations in natural environments. Lithium is commonly found as a dissolved species in groundwater and surface water, making this valuable metal a conservative tracer in hydrogeological studies. This study followed the geographical distribution of lithium concentrations and the 6Li/7Li isotopic ratio, considering the comparative characterization of Romanian waters (from different geographical regions) and foreign waters sold on the Romanian market and independent food stores. The determination of the median values was based on the bootstrap method, which allowed the identification of high values of the standard errors in the case of Li concentration in the approved waters and the organic material. In the case of the isotopic ratio, the highest value is found in foreign waters. The waters of Southern Muntenia presented significantly different values compared to all other regions, having the lowest concentration of Li (0.44 µg/L) but having the highest isotopic ratio (0.10). The waters of the S-W Oltenia and Central Transylvania regions have the highest concentrations of Li, respectively 10.45 µg/L and 10.03 µg/L, much lower than the values of the other regions. Also, the organic material shows a degree of Li concentration dispersion but the slightest variation in the isotopic ratio. The involvement in human health of Li exposure is needed for further investigation even if no regulation on the safe limits of Li in drinking water for humans is addressed
References
Abdollahzadeh, Mojtaba; Bayatsarmadi, Bita; Vepsalainen, Mikko; Razmjou, Amir; Asadnia, Mohsen. Highly Stable Li+ Selective Electrode with Metal-Organic Framework as Ion-to-Electron Transducer. Sensors and Actuators B: Chemical. 2022, 350, 130799. https://doi.org/10.1016/j.snb.2021.130799
Adeel, M.; Zain, M.; Shakoor, N.; Ahmad, M.A.; Azeem, I.; Aziz, M.A. et. al. Global navigation of Lithium in water bodies and emerging human health crisis. npj Clean Water. 2023, 33. https://doi.org/10.1038/s41545-023-00238-w.
Aral, H. and Vecchio-Sadus, A. Toxicity of lithium to humans and the environment—A literature review. Ecotoxicology and Environmental Safety. 2008, 70(3), 349–356. https://doi.org/10.1016/j.ecoenv.2008.02.026.
Araújo, D.; Knoery, J.; Briant, N.; Vigier, N.; Ponzevera, E. “Non-traditional” stable isotopes applied to the study of trace metal contaminants in anthropized marine environments. Mar. Pollut. Bull. 2022, 175, 113398. https://doi.org/10.1016/j.marpolbul.2022.113398.
Bakhtiarvand Bakhtiari, A.; Mohammadi, B.; Moazzam, P.; Didehroshan, D. and Razmjou, A. An Evolving Insight into the Progress of Material Design for Membrane-Based Electrochemical Lithium-Ion Detection. Advanced Materials Interfaces. 2021, 8(19), 1–23. https://doi.org/10.1002/admi.202100571.
Bencala, K.E.; McKnight, D.M. and Zellweger, G.W. Characterization of transport in an acidic and metal-rich mountain stream based on a lithium tracer injection and simulations of transient storage. Water Resources Research. 1990, 26(5), 989–1000. https://doi.org/10.1029/WR026i005p00989.
Blum, J.D.; Popp, B.N.; Drazen, J.C.; Anela Choy, C. and Johnson, M.W. Methylmercury production below the mixed layer in the north Pacific Ocean. Nat. Geosci. 2013, 6(10), 879–884. https://doi.org/10.1038/ngeo1918.
Bonsignore, M.; Manta, D.S.; Barsanti, M.; Conte, F.; Delbono, I.; Horvat, M. et al. Mercury isotope signatures in sediments and marine organisms as tracers of historical industrial pollution. Chemosphere. 2020, 258, 127435.https://doi.org/10.1016/j.chemosphere.2020.127435.
Bradley, D.C.; Stillings, L.L.; Jaskula, B.W.; Munk, LeeAnn and McCauley, A.D. Lithium. In: Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply. Edited by Klaus J. Schulz, John H. DeYoung, Jr., Robert R. Seal II, and Dwight C. Bradley. U.S. Department of the Interior. U.S. Geological Survey. Professional Paper 1802, 2017, K1–K21. https://doi.org/10.3133/pp1802K.
Cardoso-Fernandes, J.; Teodoro, Ana C., Lima, A.; Perrotta, M. and Roda-Robles, E. Detecting Lithium (Li) Mineralizations from Space: Current Research and Future Perspectives. Appl. Sci. 2020, 10(5), 1785. https://doi.org/10.3390/app10051785.
Cardoso-Fernandes, J.; Teodoro, Ana C., Lima, A. Remote Sensing Data in Lithium (Li) Exploration: A New Approach for the Detection of Li-Bearing Pegmatites. International Journal of Applied Earth Observation and Geoinformation. 2019, 76, 10–25. https://doi.org/10.1016/j.jag.2018.11.001.
Chan, L.H.; Alt, J.C.; Teagle, D.A.H. Lithium and lithium isotope profiles through the upper oceanic crust: A study of seawater-basalt exchange at ODP Sites 504B and 896A. Earth Planet. Sci. Lett. 2002, 201, 187–201. https://doi.org/10.1016/S0012-821X(02)00707-0.
Chen, L., Ma, T., Wang, Y. and Zheng, J. Health risks associated with multiple metal (loid) s in groundwater: a case study at Hetao Plain, northern China. Environ. l Poll. 2020, 263, 114562. https://doi.org/10.1016/j.envpol.2020.114562.
Criscuolo, F.; Taurino, I.; Stradolini, F.; Carrara, S. and De Micheli, G. Highly-Stable Li+ Ion-Selective Electrodes Based on Noble Metal Nanostructured Layers as Solid-Contacts. Analytica Chimica Acta. 2018, 1027, 22–32. https://doi.org/10.1016/j.aca.2018.04.062.
Davies, P.S.W. Stable isotopes: their use and safety in human nutrition studies. European Journal of Clinical Nutrition. 2020, 74, 362–365. https://doi.org/10.1038/s41430-020-0580-0.
Dawson, T.E. and Siegwolf, R.T.W. Using Stable Isotopes as Indicators, Tracers, and Recorders of Ecological Change: Some Context and Background. Terrestrial Ecology. 2007, Volume 1, 3-18. https://doi.org/10.1016/S1936-7961(07)01001-9.
Dellinger, M., Gaillardet, J.; Bouchez, J.; Calmels, D.; Louvat, P.; Dosseto, A.; Gorge, C.; Alanoca, L.; Maurice, L. Riverine Li isotope fractionation in the Amazon River basin controlled by the weathering regimes. Geochim. Cosmochim. Acta. 2015, 164, 71–93. https://doi.org/10.1016/j.gca.2015.04.042.
Ding, Y.; Cano, Z.P.; Yu, A.; Lu, J. and Chen, Z. Automotive Li-Ion Batteries: Current Status and Future Perspectives. Electrochemical Energy Reviews. 2019, 2, 1-28. https://doi.org/10.1007/s41918-018-0022-z.
Government of Romania and Ministry of Regional Development and Public Administration. National Agency for Mineral Resources. Order no 116/2023. List of natural mineral waters recognized in Romania.
Gou, L.-F.; Jin, Z.; Pogge von Strandmann, P.A.E.; Li, G.; Qu, Y.-X.; Xiao, J. et al., Li isotopes in the middle Yellow River: seasonal variability, sources and fractionation. Geochim. Cosmochim. Acta. 2019, 248, 88–108. Doi: 10.1016/j.gca.2019.01.007.
Guo, X.; Jingxi Z. and Qinghua T. Modeling the Potential Impact of Future Lithium Recycling on Lithium Demand in China: A Dynamic SFA Approach. Renewable and Sustainable Energy Reviews. 2021, 137. 110461. Doi: 10.1016/j.rser.2020.110461.
Huston, D.L.; Trumbull, R.B.; Beaudoin, G.; Ireland, T. Light Stable Isotopes (H, B, C, O and S) in Ore Studies—Methods, Theory, Applications and Uncertainties. In: Isotopes in Economic Geology, Metallogenesis and Exploration. Mineral Resource Reviews. Huston, D., Gutzmer, J. (eds). Springer, Cham. 2023.
James, R.H. and Palmer, M.R. The lithium isotope composition of international rock standards. Chemical Geology. 2000, 166(3–4), 319-326. https://doi.org/10.1016/S0009-2541(99)00217-X.
Jeffery, G.H; Bassett, J.; Mendham, J and Denney, R.C. Longman Scientific & Technical Vogel’ S. Textbook of Quantitative Chemical Analysis. Longman Scientific and Technical. 1989, Fifth Edit. Longman Group UK Limited.
Juzer, S., Tanwar, N. and Misra, S. Precise determination of lithium isotope ratios at the sub-nanogram level by QQQ-ICP-MS: application to natural waters and carbonates. Anal. At. Spectrom., 2022, 37, 1541-1553. https://doi.org/10.1039/D2JA00069E.
Khalid, S.; Shahid, M.; Ali Haidar Shah, N.; Saeed, F.; Mazhar Ali, M. et.al. Heavy metal contamination and exposure risk assessment via drinking groundwater in Vehari, Pakistan. Environ. Sci. Poll. Res. 2020, 27, 39852–39864. https://doi.org/10.1007/s11356-020-10106-6.
Komatsu, T.; Maeki, M., Ishida, A.; Tani, H. and Tokeshi, M. Paper-Based Device for the Facile Colorimetric Determination of Lithium Ions in Human Whole Blood. ACS Sensors. 2020, 5(5), 1287–1294. https://doi.org/10.1021/acssensors.9b02218.
Kszos, L.A. and Stewart A.J. (2003) Review of lithium in the aquatic environment: Distribution in the USA, Toxicity and Case Example of groundwater contamination. Ecotoxicology., 12, 439-447. https://doi.org/10.1023/A:1026112507664.
Kushwaha, A.K.; Sahoo, M.R.; Nanda, J. and Nayak, S.K. Engineering Redox Potential of Lithium Clusters for Electrode Material in Lithium-Ion Batteries. Journal of Cluster Science. 2017, 28, 2779–2793. https://doi.org/10.1007/s10876-017-1260-7.
Lindino, C.A.; Casagrande, M.; Peiter, A., Ribeiro, C. Poly(o-Methoxyaniline) Modified Electrode for Detection of Lithium Ions. Quimica Nova. 2012, 35(3), 449–453. https://doi.org/10.1590/S0100-40422012000300002.
Lenntech (European Head Office). Lithium and water—Reaction mechanisms, environmental impact, and health effects: Delft, South Holland, Netherlands, Lenntech, 2007.
Lurenbaum, C.; Vortmann-Westhoven, B.; Evertz, M., Winter, M. and Nowak, S. Quantitative Spatially Resolved: Post-Mortem Analysis of Lithium Distribution and Transition Metal Depositions on Cycled Electrodes via a Laser Ablation-Inductively Coupled Plasma-Optical Emission Spectrometry Method. RSC Advances. 2020, 10(12), 7083–7091.https://doi.org/10.1039/C9RA09464D.
Maffre, P.; Goddéris, Y.; Vigier, N.; Moquet, J.S.; Carretier, S. Modelling the riverine δ7Li variability throughout the Amazon Basin. Chem. Geol. 2019, 532, 119336. https://doi.org/10.1016/j.chemgeo.2019.119336.
Manceau, A.; Brossier, R.; Janssen, S.E.; Rosera, T. J.; Krabbenhoft, D.P.; Cherel, Y. et al. Mercury isotope fractionation by internal demethylation and biomineralization reactions in seabirds: Implications for environmental mercury science. Environ. Sci. Technol. 2021, 55, 13942–13952. https://doi.org/10.1021/acs.est.1c04388.
McCormack, J.; Griffiths, M.L.; Kim, S.L.; Shimada, K.; Karnes, M.; Maisch, H. et al. Trophic position of Otodus megalodon and great white sharks through time revealed by zinc isotopes. Nat. Commun. 2022, 13. 2980. https://doi.org/10.1038/s41467-022-30528-9.
Misra, S. and Froelich, P.N. Measurement of lithium isotope ratios by quadrupole-ICP-MS: application to seawater and natural carbonates. J. Anal. At. Spectrom. 2009, 24, 1524–1533. https://doi.org/10.1039/B907122A.
Mubarok, M.Z.; Madisaw, R.F.; Kurniawan, M.R. et al. Experimental Study of Lithium Extraction from a Lithium-Containing Geothermal Mud by Hydrochloric Acid Leaching. J. Sustain. Metall. 2021, 7(3), 1254–1264. https://doi.org/10.1007/s40831-021-00415-6.
Quattrini, S.; Pampaloni, B. and Brandi, M.L. Natural mineral waters: chemical characteristics and health effects. Clin. Cases Miner. Bone Metab. 2016, 13 (3), 173–180. Doi: 10.11138/ccmbm/2016.13.3.173.
Queipo-Abad, S.; Pedrero, Z.; Marchán-Moreno, C.; El Hanafi, K.; Bérail, S.; Corns, W.T. et al. New insights into the biomineralization of mercury selenide nanoparticles through stable isotope analysis in giant petrel tissues. J. Hazard. Mat. 2022, 425. 127922. https://doi.org/10.1016/j.jhazmat.2021.127922.
Ni’mah, Y.L.; Hidayatullah, N.A.A.K.; Suprapto, S. and Subhan, A. Recovery of Graphite from Lithium-Ion Batteries Leaching using Sulfuric Acid as Anode Materials. Moroccan Journal of Chemistry. 2022, 10(3), 396-404. https://doi.org/10.48317/IMIST.PRSM/morjchem-v10i3.32667.
Parchami, R., Tabrizchi, M., Shahraki, H. et al. Rapid analysis of lithium in serum samples by thermal ionization ion mobility spectrometry. Int. J. Ion Mobil. Spec. 23, 117–125 (2020). https://doi.org/10.1007/s12127-020-00264-1.
Pollmann, H. and Uwe K. Monitoring of Lithium Contents in Lithium Ores and Concentrate-Assessment Using X-Ray Diffraction (XRD). Minerals. 2021, 11(10). https://doi.org/10.3390/min11101058.
Renedo, M.; Pedrero, Z.; Amouroux, D.; Cherel, Y. and Bustamante, P. Mercury isotopes of key tissues document mercury metabolic processes in seabirds. Chemosphere. 2021, 263. 127777. https://doi.org/10.1016/j.chemosphere.2020.127777.
Ribas, B. Lithium. In: Metals and their compounds in the environment— Occurrence, analysis, and biological relevance: Merian, E., and Clarkson, T.W., eds., New York, N.Y., Publisher: VCH, Weinheim, 1991, 2, 1015–1023.
Rohiman, A.; Setiyanto, H., Saraswaty, V., Amran, M.B. Review of analytical techniques for the determination of lithium: From conventional to modern technique. Mor. J. Chem. 2023, 11(4), 979-1012. https://doi.org/10.48317/IMIST.PRSM/morjchem-v11i04.40229.
Schrauzer, G.N. Lithium—Occurrence, dietary intakes, nutritional essentiality: Journal of the American College of Nutrition. 2002, 21(1), 14–21. Doi: 10.1080/07315724.2002.10719188.
Svehla, G. Vogel’s Qualitative Inorganic Analysis. Seventh Edition. Singapore: Longman Singapore Publishers. 1997.
Suherman, A.L.; Rasche, B.; Godlewska, B.; Nicholas, P.; Herlihy, S.; Caiger, N. et. al. Electrochemical Detection and Quantification of Lithium Ions in Authentic Human Saliva Using LiMn2O4-Modified Electrodes. ACS Sensors. 2019, 4(9), 2497–2506. https://doi.org/10.1021/acssensors.9b01176.
Thibon F.; Weppe L.; Churlaud C.; Lacoue-Labarthe T.; Gasparini S.; Cherel Y.; Bustamante P.; Vigier N. Lithium isotopes in marine food webs: Effect of ecological and environmental parameters. Frontiers in Environmental Chemistry. 2023, 3, 01-13. Doi: 10.3389/fenvc.2022.1060651.
U.S. Geological Survey. Mineral Commodity Summaries (U.S. Geological Survey, 2021).
Villemin, E. and Raccurt, O. Optical Lithium Sensors, Coordination Chemistry Reviews. 2021, 435. 213801. https://doi.org/10.1016/j.ccr.2021.213801.
Voica, C.; Roba, C. and Iordache, A.M. Lithium Levels in Food from the Romanian Market by Inductively Coupled Plasma–Mass Spectrometry (ICP-MS): A Pilot Study. Analytical Letters. 2021, 54(1-2), 242–54. https://doi.org/10.1080/00032719.2020.1748642.
Wang, Q.; Liu, B.; Shen, Y., Wu, J.; Zhao, Z.; Zhong., C.; Hu, W. Confronting the Challenges in Lithium Anodes for Lithium Metal Batteries. Advanced Science. 2021, 8(17), 1–25. https://doi.org/10.1002/advs.202101111.
Yokoi, R.; Keisuke N.; Hiroki H. and Masaharu, M. Significance of Country-Specific Context in Metal Scarcity Assessment from a Perspective of Short-Term Mining Capacity. Resources, Conservation, and Recycling. 2021, 166. 105305. https://doi.org/10.1016/j.resconrec.2020.105305.
Zhai, J., Xie, X.; Cherubini, T. and Bakker, E. Ionophore-Based Titrimetric Detection of Alkali Metal Ions in Serum. ACS Sensors. 2017, 2(4), 606–12. https://doi.org/10.1021/acssensors.7b00165
Keywords
6Li/7Li isotopic ratio; approved water; distribution of lithium; statistical tests.
Tag search 6Li7Li isotopic ratioapproved waterdistribution of lithiumstatistical tests

ARCHIVE

ISSN 1582-2575
Show more...