Smart Energy and Sustainable Environment , ISSN 2668-957X
2022, Volume 25, Issue 1
Pages 23-34


Laurentiu Asimopolos 1 , Natalia-Silvia Asimopolos 1* , Violeta Niculescu 2 , Adrian Aristide Asimopolos 3

1 Geological Institute of Romania, Caransebes Street, 1, Bucharest, 012271, Romania
2 National Research and Development Institute for Cryogenics and Isotopic Technologies - ICSI Rm. Valcea, Uzinei Street no. 4, PO Box Râureni 7, 240050, Râmnicu Vâlcea, Romania
3 University POLITEHNICA of Bucharest, Faculty of Transportation, Romania

*Corresponding author: Natalia-Silvia Asimopolos, E-mail:

Received 15 December 2021 Received in revised form 18 March 2022 Accepted 23 March 2022 Available online 04 April 2022
OBSERVATION: The article is presented to the 23rd International Conference “New Cryogenic and Isotope Technologies for Energy and Environment" EnergEn 2021, Baile Govora, Romania, October 26-29, 2021


For understanding of complex geological and geophysical phenomena, regarding the mineral and geothermal waters, we must base on the whole of knowledge and available data for the study area. The input data include: digital terrain models, geological and geophysical maps, sections, drill-holes and geological interpretation, for assemble together into the same space data from various sources, in order to ensure geometrical coherence. Also, the database includes measurements of deuterium (δD (‰)) and overall salt content (∆d (mg/l)) expressed as the difference in density between a distilled water taken as a standard and water sample. Are important to take into account the geology 'boundary' data (geology contacts, interfaces and limits), the deep geology and processing/filtering of geophysical data with properly algorithms. The type of filtering of gravimetric and magnetic data must be chosen based on the depth of the model we want to get. This is necessary because the values of the geophysical parameters recorded at the surface of the terrain contain weighted average information from both the surface and from different depths, even to the base of the Lithosphere. In this paper we made some geological and geophysical considerations regarding the mineral and geothermal waters from the Ramnicu Valcea - Govora area. The types of water sources targeted are mineral springs, boreholes and surface water in the area.


L. Asimopolos, N. S Asimopolos, (2018) Methods of smoothing and filtering geological and geophysical data, Geology & Applied and Environmental Geophysics, Issue 1.1, SGEM2018, vol. 18, pp. 237-244, ISBN: 978-619-7408-35-5, ISSN: 1314-2704, DOI: 10.5593/sgem2018/1.1

M. S. Asimopolos., L. Asimopolos, (2017(a)) - Separation of gravimetric anomalies with different degrees of regionality, Oltenia. Studii si comunicari. Stiintele Naturii, Tom 33, vol. 2, pp. 27-34

L. Asimopolos, N. S. Asimopolos, (2017(b)) Filtering Gravity Data Through Polinomial Trend Surfaces, Conference Proceedings9th Congress of the Balkan Geophysical Society, Nov 2017, Volume 2017, p.1-5, DOI: 10.3997/2214-4609.201702625.

L. Blaga, M.L. Blaga, T. Ciobotaru, V. Feurdean, Studiu bazat pe măsurători de concentrație a deuteriului din apele mineral din zona Călimănești-Căciulata”, raport la contractul de cercetare ITIM Cluj-Napoca, nr. 780/1977 si nr. 366/1979.

L. Blaga, M.L. Blaga, T. Ciobotaru, V. Feurdean, C. Bindea, M. Florian, Studiu bazat pe determinări de concentrație a deuteriului din apele termominerale, freatice si de suprafață din perimetrul stațiunii Olănești”, rapoarte la contractul de cercetare ITIM Cluj-Napoca, nr. 767/1977-1978-1979.

L. Blaga, M. L. Blaga, T. Ciobotaru, V. Feurdean, (1985) Studiu bazat pe măsurători de concentrație a deuteriului din apele termominerale din zona stațiunilor balneo-climaterice ale județului Vâlcea, raport la contractul de cercetare ITIM Cluj-Napoca nr. 593/1975.

L. M. Blaga, M. Florian, (1984) Contribuţii la studiul hidrogeologic al zăcământului hidromineral Olăneşti cu ajutorul izotopilor stabili, St. Tehn. econ. Inst. Geol. Geof., Seria E, 14, p. 63-84, Inst. Geol. Geof., Bucureşti.

J. Y. Cruz, P. Laskowski, (1984) Upward continuation of surface gravity anomalies. Reports of the Department of Geodetic Science and Surveying - Report No. 360, The Ohio State University, pp. 119.

J. Huang, M. Sideris, P. Vaníček, I. Tziavos, (2003) Numerical Investigation of Downward Continuation Techniques for Gravity Anomalies. Bollettino di Geodesia e Scienze Affini. 62, 18 pp.

M. Kern, (2003) An Analysis of the Combination and Downward Continuation of Satellite, Airborne and Terrestrial Gravity Data – UCGE Reports, No.20172, Department of Geomatics Engineering, University of Calgary, 193 pp.

D.C. Papp, (2014) Caracteristici izotopice ale apelor minerale din zona subcarpatica (Călimănești – Căciulata, Olănești, Govora), Raport de cercetare la proiectul: PN 09 21 03 06: Interpretarea datelor izotopice pentru stabilirea originii și dinamicii subterane a apelor minerale din zona Harghita-Covasna. Comparatii cu alte zone carpatice (Faza 14), arhiva I.G.R.

A. Pricajan, (1972) Apele minerale şi termale din România, Editura Tehnică, Bucureşti.

A. M. Roanghes-Mureanu, (2012) The Environmental Impact of Tourist Activities Performed in the Spa Resorts of Vâlcea Subcarpathians, Analele Univ. Buc., Geografie, LXI, 147-157.

A. M. Roanghes-Mureanu, (2013) The impact of tourism on the environment in the drainage Basin of the Olănești river, Riscuri şi catastrofe, nr. XII, vol. 13, nr. 2/2013.


hydrothermal deposit, hydrogeological structures, geological/geophysical/geochemical data, isotopic research

Tag search hydrothermal deposit hydrogeological structures geologicalgeophysicalgeochemical data isotopic research